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INTRODUCTION

Approximation problems involving composite norms of vector-valued
functions have been analYzed by several authors (see, e.g., Laurent [7, 8]
and Bredendiek [2, 3]). These contributions mainly consist of ad hoc analyses
of given settings where particular composite norms are to be minimized.
In this paper, we embed the general problem of simultaneous approximation
in an appropriate product space, constructed from a finite number of normed
linear spaces. Once formulated this way, functional analysis provides us with
the relevant information. The major advantage of this natural embedding
is to produce a global theory for simultaneous approximation. The contri­
bution of this paper consequently consists of obtaining a explicit formulation
of the general characterization conditions in vectorial approximation.
Clearly, these results enable further refinements for these characterizations.

In the first section we state the simultaneous approximation problem for
which characterizations are to be found, and we recall briefly the optimality
conditions of general approximation theory. In the second section we collect
pertinent facts from functional analysis on the dual space of the normed
product space concerning the explicit form of both the linear functionals
involved and the extreme points of the dual unit ball. This enables us in the
third section to obtain the searched for characterizations easily. Finally,
they are applied to some examples.

1. FORMULATION OF THE PROBLEM

Throughout this paper we consider a finite family of normed linear spaces
over the real or complex field. The cartesian product of these spaces will be
denoted as E = n~=l Ei . For any n-tuple x E E we denote by Xi = Pri(X)
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the projection onto E;, and by II Xi il; the associated norm. The product
space E will be provided with a norm II . [I, to be specified later from the
norms given in the spaces E; . In general, it is not necessary to state explicitly
the relations between the components of the vectors in E. However, for
elements of Me E, we, assume here that the components depend on a
parameter, an element of a linear space F. In other words we define
M = {( gl(a), ... , gia)) I a E A}, where A is a subset of F, and each gi is a
mapping of F into E; . An alternative presentation, often used in literature on
vector-valued approximation, considers the elements of E to have com­
ponents which are the images by n operators PI ,... , Pn of a given function,
an element of a normed linear space E'. Consequently, (Pd, ... , Pnf) in
n:'~1 E i corresponds to fEE'.

The general approximation problem by elements of a subset Me E,
consists of determining best approximations from M to a given elementfE E
or at least of obtaining appropriate characterizations which may lead to a
constructive scheme. Best approximations to f form a subset of M, which is
the image of f through the set valued mapping, called metric projection
PM: E -+ 3'(M), defined for any fEE as

Pi,Af) = {x E M il[f - xii = d(j, M)}, (1)

where d(j, -) denotes the distance functional of f associated with the norm
over E. To avoid trivial problems, we require that M is not dense in E, and
restrict PM to the subset E\cl M. Indeed on M the metric projection reduces
to the canonical injection of Minto E.

Approximation theory provides us with characterization conditions in the
form of assertions on the existence of particular linear functionals, elements
of the conjugate space E* = 2(TI~~1 E; , IR) which is a Banach space for
the usual norm II L Ii = sup(l L(x)1111 x II ~ I}. This conjugate space is further
provided with the weak* topology u(E*, E). A particular subset of the dual
unit ball B(E*) is the set At", = {L E E* III L II ~ 1, L(x) = II x ii} which is
nonempty if x E E\{8}, and is extremal. According to [5], we also introduce
the cone C[m, M] of adherent displacements of M starting from m E M,
which is the set of elements h of E, such that for any strictly positive scalar €,

and in any neighborhood Nh of h, there exists an element h' E N h and a scalar
7J E ]0, €[ such that m + TJ • h' is in M. The largest linear subspace of E over IR,
contained in the convex cone C[m, M] is given by (--C[m, M] n C[m, MD.
The following characterization condition is known.

LEMMA 1 [5, Theorem 8]. Let M be a subset of the normed linear space E,
f E E\cl M and moE M. Also let 8 be a nonvoid linear subspace of E contained
in the cone C[mo, M], and 81.. the annihilator of8 in E*.
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(a) Ifmo E PM(f), then the set

(2)

is nonvoid in E*.

(b) If the Local Kolmogoroff condition on M versus S is sufficient, then
mo E PM(f) if and only if (2) is a nonempty set in E*.

We recall that the Local Kolmogoroff condition on M versus 8 is an always
necessary condition, which can be stated as: If moE PM(f), then
min{Re L(h) IL E C(.,Ift-mo)} ~ 0, h independent in 8. This minimum is
taken over all extreme points of the set J{t-m .

o
For the particular case M is a convex set (M = C), a general character-

ization condition can be formulated, similar to Lemma 1, where 81- in (2) is
to be replaced by a subset which is the normal cone N[mo , C] to C at mo .
The latter set is known to be the polar set of the cone iC[mo , C] [6, p. 24].
We have

LEMMA 2 [6, p. 76]. Let C be a convex subset of the normed linear space
E, f E E\cl C and mo E C. The following statements are equivalent.

(a) m o E Pdf).

(b) The set

.,Ift-mo n N[mo , C] (3)

is a nonempty subset of E*.

Finally, if C is a linear variety, C = W o + V (Va linear subspace of E), we see
that Lemma 2 is nothing else than the classical characterization theorem of
linear approximation theory, since N[mo , C] = V1- in (3).

The above characterizations are stated in their most general form. Indeed
until now, we did not use the fact that E is a product space.

2. PRELIMINARIES

We are interested in those norms over E, which can be described in terms
of the norms associated with the spaces Ei • We shall restrict ourselves to the
particular norms

II X I!loo = max{11 Xi Iii I i = 1,..., n}, (4a)

for 1 ~ P < 00, (4b)
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E being then respectively denoted by E loo and E I1' . It is clear that the norms
II . iln, ii . IIz2 , and Ii . 11/00 are equivalent, since the corresponding distances
are equivalent. Indeed the following inequality is valid for any x E E:
II x Ilzoo ~ II x IIz2 ~ I! x lin ~ n !I x 1!/00 . Consequently, these different norms all
define the same topology on E which is the so-called product topology.
Moreover, by resorting to Jensen's theorem we have that II x ilzoo ~ Ii X 111m ~
II X li/1' for any x E E and 1 ~ p < m < 00. Clearly, this proves that all
norms (4) are equivalent, and all purely topological properties, unlike the
metric ones, remain unchanged for any of these norms.

An equally fundamental remark holds for the connection between E* and
the spaces E i* = St'(E; ,IR). By [4, pp. 33-36] we have that the space
(n:l E/)n is isometric to (Eloo)*, via the mapping T: n~~l E;* -->- (n~~l E;)*,
such that T(LI ,... , L n) = L, and for any x E E loo , we have that L(x) =
2:~~1 L;(x;) and ii L II = i[(LI ,... , Ln)iln . Two normed linear spaces E and F
are isometric if there exists a linear mapping T of E onto F such that for any
x E E, !I Tx I,F = il X liE [4, p. 30]. By this definition, T is also injective since
Tx = 0 implies x = O. Hence the mapping T-I exists and both T and T-I
are linear, continuous one-to-one mappings. Similarly, we also have that
(n~=l E;*)/1' is isometric to the space (Ezq)*, where p-l + q-l = 1 with
1 < p < 00, and (n:l E;*)/oo is isometric to (En)*, both under the same
sort of mappings. If we replace a given norm in E by an equivalent one, then
the norm on the product of the conjugate spaces E;*: i = 1, ... , n is also
replaced by an equivalent one. Moreover, for the element (LI , ... , L n) E

n~=l E/, we have that !I(LI ,..., Ln)ll/oo ~ II(LI ,...,Ln)ll/m ~ II(LI ,..., Ln)liz1' is
valid, where 1 ~ p < m < 00. We obtain the following inclusion for the
dual unit balls.

By the Alaoglu theorem, every unit ball B(E;*) is a(E;*, E;)-compact. Since
the weak* topology a(n:l E;*, n~-l E;) is the product topology of the
separate weak* topologies a(E;*, E;) [1, p. 55], all balls B(n~=l E;*)/1' ,
1 ~ p ~ 00, of (5) are compact for a(n~=l E;*, n~=l E;). By these remarks
we can describe the extremal subset of B(E*), namely A," , taking into account
that E is a product space. We obtain
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where y = f31f3 - 1 if 1 < f3 < 00 and y = 1 (resp. =00) if f3 = 00 (resp. = 1).
It is interesting to remark here that relation (6) can be broken down into
three specific, but more refined, ones. Considering first Ell , then we have for
any x E E ll\{8} that the statement T(L l , ... , L n) E.Are is equivalent with

L i E B(Ei *), for i = 1,... , n. (6a)

Indeed, if T(Ll , ... , L n) E.Are , we have that II Li II ~ 1, Vi = 1, ... , nand
L:l (Re Li(Xi) - II Xi Iii) = 0 together with Re Li(Xi) ~ II Xi Iii' Conse­
quently Re Li(Xi) = II Xi Iii and Li(Xi) is real and positive, for all i = I, ... , n.
In case all II Xi Iii =1= 0, (6a) is equivalent with the requirement L i E.Are ,

i = 1,... , n. For the space E lp with 1 < p < 00, we have that •

n (' n )l/P n I
i~ Li(Xi) = 'iE Ii Xi Ilf , i~ II Li li q = 1\' (6b)

where q = pip - 1. Finally, for Eloo , the statement T(L l , ... , L n ) E ./lIre, is
equivalent to: There exists a nonvoid subset I C {I,... , n} such that

L II L i II = 1,
iEI

L i = ()

Li(Xi) = II Li II . II X /1100 for i E I,

for iE{I, ... ,n}'J.
(6c)

This can readily be verified. Indeed if T(L I , ... , L n) E./Itre, then we have that
L;~l II Li II = 1 and L;=l L;(x;) = II X 11/00 ?o II Xi Iii, for i = I, ... , n. Denoting
I the subset of {I, ... , n} such that Li =1= () and also L/ = Lilli L i Ii we have
L;~l II L i II . (Re L/(Xi) - II Xi Iii) = O. Consequently, Re L/(xi) = L/(Xi) =

II Xi Iii = 11 X I!loo , for all i E I.
Finally, it is useful to recall a result concerning the extremal points of the

dual unit ball B(E*). By the mentioned isometry T between n Ei* and E*,
we have that T and T-l are also linear continuous mappings between these
locally convex topologicallinear spaces. Consequently we can apply a theorem
(see [8, p. 436]). Since B(n~~l Ei*)IY is a convex and compact set in the
product topology of the a(E;*, Ei ) and T[B(n:=l Ei*)zy] = B(Et{,) we have
that tff(B(EI~» C T[tff(B(TI~=l E;*)IY)]' Similarly, for T-l and by the fact that
B(E~) is a convex and a(E*, E)-compact set, we have tff(B(TI:=l Ei*)IJ C
T-l[tff(B(EI~))]' The ensuing identity is then

(7)
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For some particular norms in (TI~~l E i *), the extremal points of the dual
unit ball can be described more explicitly. Indeed, it is easily verified that the
extremal points of the unit balls B(TI~~l Ei*)n and B(TI~_l Ei*)!oo are,
respectively, given as

g(B(frE/))= I(Ll, ... ,Ln)EnE/13wE{I,... ,n};
,~1 n I ,~1

Lw E g(B(Ew *)), Li = e, Vi = I,... , n, i oF wI, (7a)

and

g (B (n Ei*)J = 1(L1 , ••• , L n) En E/ I Li E g(B(E/)), Vi E{I, ... , Il}~.
(7b)

3. CHARACTERIZATION CONDITIONS

These results play an important role in obtaining optimality conditions
for the particular problem of simultaneous approximation of vector-valued
functions. Taking into account relation (6), Lemma I can immediately be
restated in the following form.

THEOREM 3. Let M = {(TI:1 gi(a)) I a E A} be a subset of the Ilormed
linear space E = (TI~~l Ei)!IJ where I ~ (3 ~ 00, fE E\cl M, and g(ao) =
TI7=1 gi(aO) E M. Let S be a nonempty linear subspace of E, contained in the
cone C[ g(ao), M].

(a) If g(ao) E PM(f), then there exist linear functionals (L1 , ... , L n) E
TI~~l Ei* such that

(1) II(L1 , ... , Ln)lllY = 1, where y = (3/({3 - 1) if 1 < {3 < 00, Y = 1
if {3 = 00, and y = 00 if (3 = 1;

n

(2) I L;(hi ) = 0
i~l

(8)
n

(3) I L;(j; - gi(aO)) = I[f - g(ao)llu3 •
i~l

(b) If the Local Kolmogoroff condition on M versus S is sufficient then
we have that g(ao) E PM(f), if and only if there exist linear functionals
(Ll ,...,L n) En:=l Ei* such that (8) is satisfied.
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If A is a subset of the Banach space F, and the mapping g: A -+ n:=1 Ei is
Gateaux (resp. Frechet) differentiable, provided that the Gateaux (resp.
Frechet) derivative at aoE int A exists, then the linear subspace S can be taken
as ([Dg(ao)] . bib E F}, where [Dg(ao)] E !t'(F, E) is the Gateaux (resp. Frechet)
derivative [5].

Similarly, if the set M is a convex set C, we obtain by Lemma 2

THEOREM 4. Let C = {n:=1 g;(a) I a E A} be a convex set of the normed
linear space E = (n:l Ei)rs where I ~ f3 ~ 00, fE E\cl C, and g(ao) =
n:=1 g;(ao) E C. The following statements are equivalent.

(a) g(ao) E PcCf).

(b) There exist linear functionals (L1 , ... , L n) En;=l Ei* such that (8.1),
(8.3), and

are satisfied.

More particularly, if C is a linear variety, C = Wo + V, we have that (8)
is a necessary and sufficient condition for g(ao) to be best approximation off
in this linear variety, taking S = V. Especially if V is finite-dimensional,
we have Theorem 4, where C is then a translated m-dimensionallinear sub­
space V and g(ao) = W o + (L:;':1 aO/PIj ,... , L;':1 ao/Pn;) E C = Wo + V.
Statement (9) becomes

n

2: L;(epij) = 0
i=1

j = I, ... ,m. (10)

Statements (8.1) and (8.3) in the Theorems 3 and 4 can further be particu­
larized taking into account (6a and c), depending on the value of fl. We have
then for f3 = I that (8.1) and (8.3) are equivalent to

(8.1') L i E B(Ei *) i = I, , n;

(8.3') Li(f; - g;(ao»= II/; - gi(ao)lli i = I, , n;

and for f3 = 00, that (8.1) and (8.3) are equivalent to: There exists a subset 1
of {I,... , n} such that

(8.1") LiEIIILill=l, L i =() for iE{I, ... ,n}\I;

(8.3") Li(/; - g;(ao» = II Li II . Ilf - g(ao)llroo i E I.

To obtain further characterizations of practical value, we now resort to some
refinements. According to [5, Lemma IS], we have in the particular case that
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the linear subspace S is d-dimensional, that whenever the linear functional L
is an element of the set described in (2), there equivalently exist h linear
functionals {~ ,... , 2 h} C C(B(E*)) and h strictly positive scalars PI ,... , Ph ,
where 1 ~ h ~ d + 1 for a real E and 1 ~ h ~ 2d + 1 for a complex E,
such that L~~1 pj = 1, L~-1 pj~(h) = 0 for all h E S, and L~-1 Pj~(f~ mo) =

II! - moII· The latter equality is equivalent with the requirement ~(f - mo) =

II! - mo II for j = 1,... , h. To apply this decomposition, in the context of
product spaces, we only need to focus our attention on the statement
!l'; E C(B(E*)). By (7) we have that the existence of a linear functional (~)
extremal point of the dual unit ball B(Ez~) is equivalent with the existence of
(Lj1 ,... , L jn) E C(B(n;~1 Ei*)zy) such that T(Lj1 ,... , L jn) = ~. Conse­
quently, from Lemma 1, we obtain the following main characterization
theorem, for the problem under investigation.

THEOREM 5. Let M = {n:1 gi(a) I a E A} be a subset ofthe normed linear
space E = (n;_1 Ei)zs, where 1 <; f3 <; 00, f EE\cl M, and g(ao) =
n~~1 gi(aO) EM. Let S be a nonempty finite-dimensional linear subspace of E,
contained in q g(ao), M], d = dim S.

(a) Ifg(ao) E PM(f)

(I) then there exist linear functionals

j = 1,... , h; (11.1)

(2) there also exist h strictly positive scalars PI ,... , PI<, where
1 <; h <; d + 1 for a real E and 1 <; h <; 2d + 1for a complex E, such that

and

h n

L pj L Lji(h;) = 0
j=1 i~1

(11.2)

n

(3) I Lji(j; - gi(aO)) = II! - g(ao)llzs
i~1

j = 1,... , h. (11.3)

(b) If the Local Kolmogoroff condition on M versus S is sufficient, then
we have that g(ao) E PM(f), ifand only if the conditions (11.1,2, and 3) ofpart a
are satisfied.

Similar decompositions are possible for Lemma 2. In particular, if M is a
linear variety, we obtain
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COROLLARY 6. If M is a translated d-dimensional linear subspace V of
the normed linear space E = (n:l Ei)I13, where 1 :0::;; f3 :0::;; 00, fe E\M, and
g(ao) = Wo + (L:=l aO/Plj ,... , L:=l aOj<Pnj) e M = Wo + V, then thefollowing
statements are equivalent.

(a) g(ao) E PM(f).

(b) There exist linear functionals (11.1) and h strictly positive scalars
PI ,... , Ph, where 1 :0::;; h :0::;; d + 1 for a real E and 1 :0::;; h :0::;; 2d + 1 for a
complex E, such that (11.3) and

h n

2: pj 2: Lji(<Pil) = 0
j~l i~l

1= 1,... , d. (12)

Further refinements of the foregoing decomposition are readily obtained
if the product space E is endowed with the norm (4a) or the norm (4b),
where p = 1. Indeed for E = (n:l Ei)ll , by (7b) and (6a) we have that both
the conditions (11.1) and (11.3) in Thoerem 5 and Corollary 6 become:

(11.1') There exist h distinct sets of n linear functionals (Lj1 ,... , Ljn) for
j = 1,... , h, and Lji E C(B(Ei*» for i = 1, ... , n, where 1 :0::;; h :0::;; d -+- 1 for a
real E and 1 :0::;; h :0::;; 2d + 1 for a complex E.

(11.3') L ji(/; - gi(aO» = I!/; - gi(ao)lli V(i,j) E {1,... , n} X {I, ... , h}.

On the other hand, considering E = (n~_l Ei)IOO we have by (7a) and (6c)
that (11.1 and 3) in Theorem 5 and Corollary 6 can be stated as:

(11.1") For any j = 1,... , h, there exists a unique index I(j)e{l, ... , n}
such that Lj[{j) e C(B(E/(j»), and Lji = 0 for i E {I, ... , n}\!U), where
1 :0::;; h :0::;; d + 1 for a real E and 1 :0::;; h :0::;; 2d + 1 for a complex E.

(11.3") Lj[(j)(fIv) - g/(j)(ao» = Ilf - g(ao)llloo j = 1,... , h.

Clearly by (11.3") we have that IlfIG) - g/v)(ao)ll/v) = IIf - g(ao)llloo holds
for j = 1,... , h.

4. SOME ApPLICATIONS

By the information gathered in the preceding sections, most applications
become straightforward. We consider a wider class of norms. We define

and also

n(x) = max{,\i II Xi Iii I i = 1,... , n},

n

N(x) = L Ai II Xi Iii,
i=l

(13a)

(l3b)
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where all Ai are arbitrary positive scalars. In order to obtain adequate
characterizations for the approximation problem of (II ,... ,fn) by elements
of M = {n:l gi(a) I a E A}, we apply the preceding theory on the modified
problem which consists of approximating the function (Adl" .. , Anfn) by
elements of {n~~l Ai gi(a) I a EA} for the norm (4a) or (4b), where p = 1. In
a first example we consider the product space (C(Q))n endowed with the
norm (l3a), where II Xi Iii = max{j xi(q)l! q E Q} is the norm of Xi =
Pri(X) E C(Q). The following characterization follows immediately from
Corollary 6 and (11.1" and 3").

COROLLARY 7. Let V = {n:l (L;~l ai/Pik) I (al ,... , am) E 'fjm} be an
m-dimensionallinear subspace of (C(Q))n, endowed with (l3a), v(a) E V, and
f = (j~ ,.. ·,fn) E (C(Q))n\ V. The following statements are equivalent.

(a) v(n:) E Pv(j).

(b) There exist h points ql ,... , qh in Q and h nonzero scalars I-'i,
j = 1,... , h, where 1 ~ h ~ 2m + 1, and, with every j = 1,... , h, there exists
a unique index I(j) E {I,... , n} such that

and

j = 1,... , h,

h

I AI(j) . I-'jep/li)!(qj) = 0
j~l

1= 1,... , m.

In a second example, the product space (C(Q))n is endowed with the
norm (l3b). The following characterization can be obtained.

COROLLARY 8. Let V = {n~=l (L;~l akepik) I (al ,... , am) E 'fjm} be an m­
dimensional linear subspace of (C(Q))n, endowed with (l3b), v(n:) E V, and
f = (II ,.. ·,fn) E (C(Q))n\ V. The following statements are equivalent.

(a) v(n:) E Pv(j).

(b) There exist h distinct sets, each of n points, (Xl' YI ,... , Zl),""
(Xh , Yh ,... , Zh) E Qn and h strictly positive scalars pj where 1 ~ h ~ 2m + 1,
and there also exist (n . h) scalars €ji, VU, i) E {1, ... , h} X {I,... , n} such that
I €ji I = 1,

h

I piAI€jlepliXj) + ... + An€jn<Pnk(Zj)) = 0
j~l

k = 1, ... ,m,
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j = 1,... , h

j = I, ... , h.

It is interesting to observe the difference between the structure of the error
curves in the two foregoing examples. In the first case there are h points in Q,
which are distributed among the different subproblems. Each partial error
curve attains the global norm at these points. There may be some partial
curves where the global norm is not attained. In the second case, for every
partial error curve associated with a subproblem there exist points (at least 1)
where the partial norm is attained. But in most problems there are no points
where the global norm is attained.

Finally in a third example, we consider the product space E X F endowed
with the norm N(Xl, x 2) = 1\ II Xl liE + '\2 II X2 IIF, where '\1 and '\2 are
arbitrary positive scalars, E = C(Q) with II Xl liE = max{1 x1(q)l! q E Q}, and
F = LiB), where 1 < p < 00, and II x2 11F = (fa [X2(t)]P dt)1/p. The following
characterization is easily deduced for the linear approximation problem.

COROLLARY 9. Let V = {(L:~l akeJ>k , L;:l akl.Jlk) I (al ,... , am) E "6'm} be
an m-dimensionallinear subspace of C(Q) X Lp(B), endowed with N(XI , X2),
v(o:) E V, and f = (11 ,,h) E [C(Q) X Lp(B)]\ V. The following statements are
equivalent.

(a) v(o:) = (L:-1 O:keJ>k , L:_l O:kl.Jlk) E Pv(f)·

(b) There exist h points qi E Q and h nonzero scalars Pi' where
/I.

1 ::s; h::S; 2m + 1, such that Li=l I Pi 1= 1,

and

for k = 1, ... , m.
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